
Chapter 2 — Fundamental Concepts for Designing Environments
CHAPTER 2

FUNDAMENTAL CONCEPTS FOR DESIGNING
ENVIRONMENTS
9

Chapter 2 — Fundamental Concepts for Designing Environments
10

Chapter 2 — Fundamental Concepts for Designing Environments
Importance of Fundamental Concepts for Designing
Environments

The means for making software usable, as I have defined the term in the
previous chapter, is through Environments. Environments are explained in the next
two chapters, but it is essential that you have a clear idea of the fundamental concepts
we use in this design task. If you are sorely pressed for time, you can skip this chapter
and go on to the next, then come back to this one later on. But if you find yourself
starting to develop Environments on an ongoing basis, you should make a point of
reading this chapter sooner or later.

I sometimes feel that the concepts in this chapter should be called “the fun-
damental concepts of Western civilization”, although that would be an exaggeration,
since there are certainly other fundamental concepts as well. But the ones in this
chapter are so important in all technical subjects (not only computer science) —
indeed, in all technical thinking — that if you do nothing more than understand them
and start to apply them, you will have gotten your money's worth out of this book.

The first of these fundamental concepts is the What versus the How, or
Semantics versus Syntax.

Fundamental Concept 1: the What versus the How, or Seman-
tics versus Syntax

We will begin with an example.

Example 1
The following story has been told many times. I do not know its source — it

seems to have first appeared in the early seventies — or if this version is the same as
the original one, but that is not important as far as the point of the story is concerned.

 In a high-school physics exam, the question was asked, “Suppose you had
only a barometer and were asked to measure the height of a very tall building. How
would you do it?”
11

Chapter 2 — Fundamental Concepts for Designing Environments
 The teacher received various answers from his students, including the one he
wanted. However, one answer he didn't expect was the following: “I would tie the
barometer to the end of a very long string, go to the top of the building, lower the
barometer until it touched the ground, then measure the length of the string.”

 The teacher marked the answer wrong. The student protested. The teacher
agreed to give the student another chance. This time, the student answered: “I would
go to the top of the building, drop the barometer off, and time how long it took to reach
the ground. Then I would use the formula

 where:
 g is the acceleration of gravity,
 t is the number of seconds the barometer took to reach the ground, and
 s is the height of the building.”

Again the teacher, not getting the answer he wanted, marked the answer wrong.
Again the student protested, and now his parents joined in. Eventually the teacher
again relented and agreed to give the student one last chance. This time the student
wrote the following on his answer sheet: “I would go to the superintendent of the
building and say, ‘Here, Mr. Superintendent, I will give you this nice new barometer if
you will tell me how tall this building is.’”

How long the controversy raged, or what its final outcome was, I do not know,
but the lesson of the story is clear, namely, that there is seldom only one way to do
something. Or, in other words, for a given What (finding the height of a very tall
building), there are usually many Hows.

 The What: measure the height of a very tall building.
 The Hows: the three ways described. You can probably think of at least one or

two additional ones.
Here are a few more examples.

s gt2

2
-------=
12

Chapter 2 — Fundamental Concepts for Designing Environments
Example 2
 The What: Go from your house to work.
 The Hows: Go by car, bus, train, bicycle, on foot, or use some combination of

these. Of course, some ways are better than others, depending on what is most
important to you at the time (e.g., speed of getting there, convenience, cost, not
polluting the environment).

Example 3
The What: Obtain a master's degree in technical communications.
The Hows: All the different colleges and universities you could attend. Some,

of course, are better than others (e.g., will enable you to get a higher paying job, or are
cheaper).

Example 4
 The What: Solve the following quadratic equation for x:

x2 + x - 2 = 0.

The Hows: Among these are:
1. Use the quadratic formula we learned in high school math courses. It works

for any quadratic equation:

where a is the coefficient of x2 (hence a = 1 in our example), b is the
coefficient of x (hence b = 1 in our example), and c is the constant standing alone
(hence c = - 2 in our example).

We find that x = 1, x = - 2, are the solutions.

x b– b2 4ac–±
2a

--------------------------------------=
13

Chapter 2 — Fundamental Concepts for Designing Environments
2. Factor the left-hand side of the quadratic equation by trial and error and find
that

(x - 1)(x + 2) = 0,

hence

x = 1, x = -2 are the solutions.

Semantics versus Syntax

Other terms for the What versus the How are semantics versus syntax. In
normal everyday circumstances, what you want to say (what you mean, i.e., the
semantics) can usually be said in many ways. A grammar book for a natural language
gives you the rules for stringing words together, i.e., the syntactic rules, but it only
incidentally discusses the meanings of the strings of words.

In computer programming, the distinction between What and How is especially
clear. The What is the function, e.g., addition or subtraction or multiplication or
division or sorting a set of numbers or accessing data from a data base or displaying
information on a computer screen in some format; the Hows are the various programs
that can compute (implement) the function. Some programs, of course, are better than
others for the goals at hand; some produce an answer faster than others, some pro-
grams are easier to write and test than others, some require less memory space, etc.

In Environments, the What is the task that the user can perform; the How is the
subtasks into which the task is broken down. Eventually, of course, we reach a subtask
that can be entirely performed by the software.

Knowing how to recognize the difference between the What and the How is
one of the most important skills you can have, and one that will serve you in fields
outside of Environment design or technical communications. In industry, one of the
most common, and most expensive, failings of managers and the engineers who work
for them, is the belief that there is only one way to develop a new product, namely, by
designing it from scratch. But in fact the best design solution is often to do as little
14

Chapter 2 — Fundamental Concepts for Designing Environments
original design as possible, and to use as many existing parts and assemblies as pos-
sible— something that most new engineers do not like to realize. But that realization
can only come to one who is used to asking himself, What is the goal here? and then,
How can we go about accomplishing it? and then Of all the ways of accomplishing it,
which are the best for our purposes?

Fundamental Concept 2: Structure, or Breaking Complex
Things into Simpler Things

The advantage of breaking complex things into simpler things is so taken for

granted in Western culture that we usually consider it obvious. We break speech into
certain constituent sounds, then represent those sounds with strings of letters. We (and
nature) break matter into molecules, then molecules into atoms, then atoms into
subatomic particles. We break a large business corporation into divisions, then each
division into various departments, e.g., Research and Development, Marketing,
Manufacturing. In the U.S., we break the government into the Executive, Legislative,
and Judicial branches. All perfectly obvious. But the recognition of the importance of
the concept — the recognition of its nearly universal applicability — was, as far as I
know, limited to the West until Western culture began to spread throughout the world
in the nineteenth century. Perhaps, as Marshall McLuhan, the sixties philosopher of
communications media argues, the reason this was so clear to the West was that, from
the time of the ancient Greeks, literate Western man has had the benefits of an alpha-
betic writing system staring him in the face. I don't know. But in any case, this is an
example of an idea whose importance is in no way diminished by the fact that its value
is obvious.

Breaking a complex thing down into smaller things is a way of expressing the
idea of structure. One field in which complexity is always in danger of overwhelming
those who work in the field is computer science, in particular, computer programming.
Thus, soon after the art of programming came into being in the 1940s, programmers
recognized the need to break programs up into more easily manageable pieces which
became known as subroutines. A subroutine performs a specific task, e.g., properly
handling the carries in addition, or printing the result of a calculation. Strangely
15

Chapter 2 — Fundamental Concepts for Designing Environments
enough, the importance of structure, or, rather, of certain kinds of structure over other
kinds, did not become clear to the programming community until the early 1970s. The
story, in brief, is that in the March 1968 issue of Communications of the ACM (the
Association of Computing Machinery), there appeared a letter to the editor titled, “Go
To Statement Considered Harmful.” A go-to statement is a statement in a computer
program that commands the computer to execute not the next sequential statement in
the program, but some other statement elsewhere in the program. In effect, it enables
the programmer to introduce all sorts of special cases into the process by which the
program performs its computation; it enables him or her to make the program “jump
all over the place” during the course of a computation.

 According to the author of the letter, computer scientist Edsger Dijkstra, this
leads to programs that are difficult to understand, hence difficult to check for correct-
ness and difficult to debug. Hence the go-to statement should be avoided as much as
possible.

This letter is generally considered the beginning of the programming
methodology now known as structured programming. In 1972, Dijkstra, along with
O.-J. Dahl and C. A. R. Hoare, published a book, Structured Programming, which set
forth the structured programming methodology in more detail. (This methodology
was based on the use of block-structured, or Algol-like (nowadays, Pascal-like, or C-
like) languages.) In 1976, Dijkstra developed the idea still further, introducing a
method of writing correct programs (i.e. programs that compute the function we want
them to compute) by, in effect, writing them in a way that permits the programmer to
easily prove the correctness of each successive approximation to the final, complete
program.

As with many new ideas, the technique of structured programming, as well as
its value, was obvious after it had been pointed out. In fact, structured programming is
nothing but the application to programming of the old technique of outlining that
writers of term papers learn to use (sooner or later). Structured programming is simply
a method of breaking down a large programming task into a manageable set of smaller
programming tasks, and then breaking each of these down into a manageable set of
still smaller programming tasks, etc., and doing so in a way that enables the
programmer to prove the correctness of the program as it develops. In other words,
structured programming is a prime example of breaking a given What down into a
How consisting of smaller Whats.
16

Chapter 2 — Fundamental Concepts for Designing Environments
The idea of a structured program lies at the very root of our solution to improv-
ing usability, namely, the development of Environments. An Environment is like a
structured program with the user as the computer that executes it. This is an important
point, and I will explain why.

The traditional view of a computer, its software, and the user of both, is shown
in Fig. 2-1a. Here, the computer is a machine (a “black box”) over there that is
capable of solving certain problems. The user of the machine is a separate entity that
brings problems to the machine for it to solve — specifically, gives inputs to the
software in the form of commands and data which may be in a file, or accessed by the
software from some specified remote source, or else manually input by the user. The
user starts the software and hardware running (the hardware being a central processing
unit (cpu) and memory), and together they then perform various computations, or,
more correctly, information processings, and produce the result as output. The com-
puting entity, in this view, is the computer and the software, as shown by the dotted
line in the figure.

The new view, and one which leads to the design of software that is much
easier to use, is that shown in Fig. 2-1b. Here, the computing entity is hardware,
software, and user. The user is the “central processing unit” that runs the hardware
and software. The user's “program” is the user Environment — the keyboard plus the
terminal screen plus the manuals. (I will write this type of program in quotation marks
because it is not a program in the accepted sense of the word, i.e., it is not necessarily
capable of being executed by a machine.) The input is given to this entire entity — by
another person who gives it to the user, or by the user bringing it him- or herself.
Similarly, the output is an output from this entire entity.

All of which is summed up by the motto, “Not human alone, nor machine
alone, but human and machine as a unit” — a motto for the design of the computers
and software of the future.

Viewed in this way, it is clear that the “program” (Environment) that makes
computer and user solve a given problem is only partially the software that runs the
computer. The Environment must also tell the user how to operate the computer so that
the computer's software can then complete the work of solving the problem.

The “program” (i.e., Environment) is what computer scientists call non-
deterministic, in the sense that there are usually a variety of ways by which the user
can achieve the desired result: (s)he may have a variety of different programs to use,
some of which may be interactive, meaning that the user may guide the computation as
17

Chapter 2 — Fundamental Concepts for Designing Environments
it proceeds (this type of operation is also known as on-line); some may not be
interactive, meaning that once the computation is started, it runs to completion without
user intervention; this type of operation is also known as off-line or background.

Several things become clear from this new point of view. First of all, the
obsession of most computer hardware designers and programmers with speed of
computation — i.e., the speed at which the hardware cpu can execute program
instructions — misses the point. Equally important, and probably more so, is the
average (or typical) speed at which a given type of problem can be solved or type of
“job” can be processed, e.g., a job such as typing and printing a report, or obtaining a
certain type of information from a data base. The speed to increase is the speed at
which the average user plus the computer can solve a given problem. This speed must
be averaged over all users, including first-time users. In the computer industry, the
rate at which jobs can be processed through a system is sometimes called the
throughput. The speed measurement must include all training, if training is in fact
necessary in order for first-time users to use the system, and/or all time spent reading
the manuals, and/or all time getting help from the manufacturer’s customer support
service. It is by no means always the case that increasing the computer's speed will
increase the throughput, especially when it takes hours, even days, to figure out how to
make the computer solve the problem in the first place.

An analogy to Environments outside the field of computers is that of an
astronaut in a space suit exploring the moon. The astronaut alone does not carry out
such exploration, nor does the space suit alone; both together do.

You should know that the idea of regarding the user of a computer
Environment as a kind of central processing unit (cpu) that executes the non-
deterministic “program” which is the Environment, in order to solve the problem
represented by the input — that this idea is considered a giant step backward by some
computer scientists, especially by those with a vested interest in some of the woolier
branches of the discipline, e.g., cognitive science. “Man is not a machine!” these
researchers proclaim. But, as you will see, the idea of an Environment is in no way
aimed at making the user do dull, repetitive machine-like work. It is aimed rather at
rendering “look-up-able” as much as possible of the information required for the use
of a computer system — or, as I have shown in another book, How to Improve Your
Math Grades, for solving problems in a mathematical subject.
18

Chapter 2 — Fundamental Concepts for Designing Environments
Figure 2-1. Old and New Views of User and Computer

computer hardware

computer
software

 keyboard

user

output

input

“computer”

keyboard
computer
software

computer hardware

“computer”

outputinput

 b) New View of User and Computer

 a) Old View of User and Computer
19

Chapter 2 — Fundamental Concepts for Designing Environments
Fundamental Concept 3: Algorithms and Heuristics

An algorithm is a mechanical procedure for producing an answer to a problem

in a mathematically based subject. The phrase mechanical procedure means a
procedure that can be carried out by a machine. (This definition can be made more
precise using the concept of an idealized, simplified computer called a “Turing
machine,” which is named after the British mathematician who first used it in certain
proofs in formal logic in the 1930s.) Actually, an algorithm is not merely a
mechanical procedure, but one which is guaranteed to produce an answer no matter
what the input. As it turns out, there are many mechanical procedures which will
produce answers for some inputs, but not for all; in these latter cases the procedure
may simply repeat certain steps over and over, forever. Some examples of algorithms
are: the familiar rules for adding, subtracting, multiplying, and dividing which
students are taught in grammar school; variations on these rules which are
implemented in pocket calculators and computers; the procedures, implemented as
programs, that operate automatic tellers in banks; just about all procedures,
implemented as programs, for processing information in business, e.g., inventory
control, payroll check writing, employee record keeping, etc.

A heuristic, on the other hand, is a procedure, and not necessarily one that can
be performed by a machine, which may or may not yield an answer, but which
experience suggests will do so in most cases. Webster's New Collegiate Dictionary
defines the term heuristic as “of or relating to exploratory problem-solving techniques
that utilize self-educating techniques (as the evaluation of feedback) to improve
performance.” In this book, I will use the term procedure instead of heuristic.

In paper implementations of Environments, you normally write procedures
which, in principle at least, are algorithms, e.g., a procedure to make all page numbers
in a preface print as roman numerals, or a procedure for transferring a file from one
disk drive to another. In fact your goal is to reduce as many tasks as possible to such
procedures! We will say more about this in the next chapter.
20

Chapter 2 — Fundamental Concepts for Designing Environments
Fundamental Concept 4: Alphabetical Order

You may not be inclined to consider alphabetical order a particularly important

idea, but it is. For one thing, it is an order which every literate person knows, and it
works systematically for strings of letters and numbers of any length.

Do not take alphabetical order for granted! In many languages, its equivalent
is difficult, if not impossible, to achieve. In ideogrammatic languages such as
Chinese, for example, the nearest thing to alphabetical order is a listing of written
characters in terms of the number of strokes needed to make them. Thus all one-stroke
characters come first, then all two-stroke characters, then all three-stroke characters,
etc. But there is no systematic way to further break up each set of characters having a
given number of strokes.

As you develop Environments, you will also develop a new appreciation of this
natural, universal (in the Western world) ordering. For some interesting speculations
about the extraordinary influence that alphabetic systems of writing may have had on
Western man — in particular, on the thinking of Western man — you might enjoy
some of Marshall McLuhan's books, e.g., The Mechanical Bride, The Gutenberg
Galaxy, Understanding Media.

And now, with these fundamental ideas as a basis, we can get down to the
business of constructing Environments.
21

Chapter 2 — Fundamental Concepts for Designing Environments
22

	CHAPTER 2
	FUNDAMENTAL CONCEPTS FOR DESIGNING ENVIRONMENTS
	Importance of Fundamental Concepts for Designing
	Environments
	Fundamental Concept 1: the What versus the How, or Semantics versus Syntax
	Semantics versus Syntax

	Fundamental Concept 2: Structure, or Breaking Complex Things into Simpler Things
	Fundamental Concept 3: Algorithms and Heuristics
	Fundamental Concept 4: Alphabetical Order

