
Chapter 3 — How to Build a Zero-Search-Time Environment
CHAPTER 3

 HOW TO BUILD A ZERO-SEARCH-TIME
ENVIRONMENT
23

Chapter 3 — How to Build a Zero-Search-Time Environment
24

Chapter 3 — How to Build a Zero-Search-Time Environment
Definition of Environment

Αn Environment for a software system is all the information that any intended
user of the system needs in order to perform the tasks made possible by the system.

Environments typically consist of some combination of the following:
keyboards, softkeys, windows and/or other menu facilities, error and other messages
issued by programs, manuals, quick-reference cards, on-line help systems, hypertext
facilities, training courses, on-line support, and a considerable body of information
transferred from user to user by word-of-mouth (“systemlore,” “folklore”).

An Environment, therefore, is a data base — although not one that is always
implemented in software — whose content is all information required to use a
software system. Or, viewed more abstractly, an Environment is a mapping (i.e., a
function) from tasks to those procedures and other information required to accomplish
those tasks on the system.

Before we proceed, let me make a distinction which may seem pedantic: in the
first paragraph above, instead of “tasks made possible by the system” I should have
said “tasks made more rapid by user and system.” The reason that this distinction is
important is that good Environment design requires that the designers always hold
before them the “new” view of a computing system that was described in chapter 2, as
well as the all-important difference between the What and the How. No digital
computer ever does anything that a person couldn't, in principle, do; it just does it
much more rapidly. Long before computers existed, people wrote and edited
manuscripts, kept financial records, drew graphs, performed calculations,
communicated with each other. The binary symbol manipulations that take place in
the cpu could, in principal, be done by a person — or, I should say, taking into account
how many of these manipulations are done per second nowadays — by many
generations of persons. Even though, for brevity, I will use the phrase, “tasks made
possible by the system,” you should understand that I mean this phrase in the sense
explained in this paragraph.

 Every computer system comes with an Environment of some sort. The
question is, How good is the Environment? On the basis of the definition of usability
given in chapter 1, we can see that the answer is, That depends on how rapidly users
are able to find out how to perform the tasks made possible by the system, in other
words, by how usable (my definition) it makes the system. More specifically, the
goodness of an Environment can be measured by the average length of time it takes
any user to find out how to perform any task he or she wants to perform. In the sample
Environment in the appendices, a goal of 25 seconds maximum look-up time was set
— any user in the class of intended users should be able to find out either how to
25

Chapter 3 — How to Build a Zero-Search-Time Environment
perform any task offered by the system, or to find out that the task cannot be
performed on the system, within 25 seconds, except, possibly, for the first time the
user uses the Environment. In the case of the Appendix A Environment, a goal of
under three minutes is set for the first look-up time because in this case the user has to
learn how the Environment works.

Here we see the importance of the distinction between usability and
pleasantness-of-use. The procedure for actually performing the task — the sequence
of subtasks required to perform the task — may be pleasant or unpleasant, may be easy
to carry out or tedious, but that is not a quality of the Environment: it is a quality of the
underlying software. (I am assuming, here, that the procedures are correct.)

To illustrate the point, suppose a project manager proclaims that the
Environment for his product is perfectly adequate: why, not only are there several
manuals — Introduction, User's Guide, Theory of Operation, and User's Reference —
but the company also offers training courses, and eight-hour-a-weekday access via
phone and e-mail to customer support (for a modest annual fee). Let us see what, in
fact, (s)he is saying:

• First, (s)he is saying that any user who makes use of all these facilities will be
able to accomplish any task made possible by the system. (How does (s)he know?)

• Second, (s)he is saying that, for some tasks, it may take hours, and, in fact,
days, to find out how to perform them. Not 25 seconds, or three minutes and 25
seconds, but days — namely, in the time required to attend training courses. And after
that, certainly hours per week in searching through manuals and talking to other users
and calling customer support. I hope that no project manager reading this will be in
doubt about the influence which a difference of days versus three minutes, 25 seconds
in information-retrieval time would have on a prospective buyer — even if the
underlying software were identical to that of a competitor's product!

Definition of Zero-Search-Time Environment

 Since every software system has an Environment — even if that Environment
consists of no manuals, no on-screen menus, nothing but the name and address of the
manufacturer (a rather inefficient Environment, of course, since every first-time user is
forced to either discover how to perform each task by trial and error, or else by calling
or writing the manufacturer) — the purpose of this book is to present a method for
developing efficient Environments, i.e., Environments which have been designed to
26

Chapter 3 — How to Build a Zero-Search-Time Environment
reduce the look-up time to some specified maximum, e.g., 25 seconds. In that case, we
say that no user should be forced to spend more than 25 seconds trying to find out how
to do what he or she wants to do in a software system — regardless of the size of the
system, regardless of whether the documentation is on-line or on paper. No user
should ever have to figure out where the instructions on performing a task are. This
should be as easy — should require as little thought — as looking up a word in the
dictionary. Any technical writer or human factors expert who doesn’t deliver on this
central criterion of success is depriving his or her company of major profits.

The essence of such Environments is that the user never has to figure out where
the procedure implementing a task is. In other words, the user never has to spend any
time searching for the procedure in the sense of trying to find something whose
location one does not know. Hence the adjectival phrase, zero-search-time. Of course
there will always be a certain, nonzero look-up time, simply because we cannot turn
pages, or manipulate a mouse, or expect hypertext or menu software to execute in zero
time.

 Incidentally, if you doubt the importance of minimizing look-up time, a study
of present, and prospective, customers by one of the Big Five computer companies in
the late 1980's found that the factor which would most strongly influence a future
purchase of the company's computer products — was that the time to locate
information was less than one minute!

Another way of thinking about the design of efficient Environments is that it is
an attempt to engineer the use — structure the use —of a proposed software product.

The Real Contribution of Windowing Systems

This is a good place to take a critical look at what exactly windowing systems
have done for usability and pleasantness-of-use. They have certainly increased the
speed of issuing commands, a fact which could be easily verified by having one user
enter a list of commands as rapidly as possible by typing them, and another user issue
the equivalent of the same list of commands by clicking menu choices with a mouse.
Furthermore, for a certain limited set of tasks, they have improved usability (my
definition) by visually clustering related tasks, e.g., those pertaining to printing a
document. Windows, furthermore, have established an interaction language which is
now widely known and used, one involving menus, dialogue boxes, use of the mouse,
and conventions for moving dialogue boxes and other display elements around on the
27

Chapter 3 — How to Build a Zero-Search-Time Environment
screen, reducing their size, etc. But if you are inclined to say that icons and windows
have significantly improved speed-of-access to information about how to perform
tasks, I encourage you to conduct a few experiments. Select any person you consider
to be computer literate, and, in particular, knowledgeable about windowing
environments, but who is not familiar with a given program that uses a windowing
interface, and ask that person to perform a common, simple task. For example, in the
FrameMaker desktop publishing system, ask the user to insert a bullet (•) at a
specified point in the text, not as part of a bulleted list. Or in OpenWindows running
on a Sun workstation, ask the user to change the placement of an icon which appears
as part of the initial Desktop to a new, specified location. Or ask a person who is Unix
literate, but not a Unix expert, to change the printer on which e-mail messages are
printed, or to define a new alias (abbreviation) for a list of people who are to receive
messages. (Other examples are given in chapter 4 in the section “Exercises for the
Skeptical.”) In all of these cases, you will probably not need a stopwatch to do the
timing.

Effect of Look-Up Speed on Environment Design

Look-up speed is the great vacuum cleaner of Environment design. (I don't
like to think how long it took me to come to this important realization!) The criterion
of look-up speed provides an easy way to resolve those endless arguments which
technical writers get into, especially when they are working on on-line documentation
systems, about “what the user will want” and what the user will do when confronted
with this or that screenful of icons, titles, messages, and whatnot in the documentation
system. Given two competing proposals for how a documentation window should be
designed or how the documentation itself should be structured, you simply ask, Which
of these is more likely to enable a user, including a beginning user, to find out how to
do what (s)he wants to do in less than 25 seconds? and give a convincing scenario for
your reply.

The greater you want look-up speed to be, the less thinking about how to find
information you can ask your users to do. In fact, as you will see, in efficient
Environments, your goal is “no-thinking” look-up-ability. This can easily be achieved
with today's technology; in fact, it can be achieved with Environments that are totally
implemented on paper!
28

Chapter 3 — How to Build a Zero-Search-Time Environment
 This property of Environments can be expressed informally by saying that
once a user has decided what he or she wants to do on the system, he or she should not
have to figure out how to do it, or if it can be done on the system! In the vernacular, it
should be a “no-brainer” to find out how to perform the task, or to find out that the task
is not offered by the system.

Look-up speed is the central, the most important, criterion of usefulness of an
Environment. If you ever find yourself in a course on documentation design in which
this criterion is not mentioned, or is considered “also desirable”, run, don’t walk, to the
nearest exit, because you are about to waste your time and money. Everything follows
from look-up speed: structure, format, correctness, and the method by which the
documentation is created.

Replies to Criticisms of the Idea of Developing a Method for
Environment Design

Before I present the method, I would like to respond to a few common

criticisms of the idea of developing a method.
Criticism 1: A method is an attempt to reduce thinking, but thinking is

precisely what we need more of, not less.
My first reply is the following quote:
“It is a profoundly erroneous truism, repeated by all copy books and by

eminent people when they are making speeches, that we should cultivate the habit of
thinking of what we are doing. The precise opposite is the case. Civilization advances
by extending the number of important operations which we can perform without
thinking about them.” — Whitehead, Alfred North, quoted in Newman, James R., The
World of Mathematics, Vol. 1, New York: Simon and Schuster, 1956, p 442.

 My second reply is that we must be clear about the type of thinking that the
Environment method proposes to reduce: it is the thinking presently required to find
out how to perform tasks on computer systems. It is certainly not the thinking required
to organize those tasks to accomplish some larger task, e.g., to write a program, or
construct a complicated search of a data base.

Criticism 2: The design of a software system is too complicated a process to be
reduced to a method. (The reason why I say “software system” here, instead of just
“documentation system,” will become clear below.)
29

Chapter 3 — How to Build a Zero-Search-Time Environment
My reply is that, nevertheless, attempts have been going on for years to find
methods for designing software, e.g., through the development of Computer-Aided
Software Engineering (CASE) systems, as well as for maintaining it, e.g., Source
Code Control Systems (SCCSs), and Bug Tracking Systems (BTSs). (The difference,
incidentally, between CASE systems and the method I am setting forth is that CASE
systems are aimed at engineering software, whereas my method is aimed at
engineering use.) It is precisely the most complicated technical tasks that we should,
and generally do, try to simplify by reduction to a method.

Third, it is much easier to talk about, and apply, variations of a simple design
method than it is to talk about, and apply, a collection of ill-defined ad hoc techniques.

Criticism 3: The method is too rigorous.
My reply is, first, to ask if “too rigorous” means too rigorous to result in an

improvement over present practice, or if it means too difficult for current writers and
human factors experts to follow. In either case, we can only determine the answer by
actual trial.

Criticism 4: It would nice to be able to apply a method, but it will be too
expensive in time and/or money.

My reply is that the method doesn’t have to be applied in its entirety in all
cases. It is not an either/or proposition! In particular, Environments can be created
after the fact — after the product has been designed and released to production. We
will discuss these Environments below under “After-the-Fact Environments”. The
only disadvantage is that in this case, if the software is indeed difficult or tedious to
use, it is much more difficult to modify.

Criticism 5: (A leftover from the “Artificial Intelligence Spring” (AI Spring) of
the mid eighties): we should postpone concerning ourselves with usability and just
wait for the natural language interpreters which will make the usage problem trivial.

My first reply is that many tasks which we perform with computing systems,
e.g., text and graphics editing, routine business activities such as order entry, inventory
control, are most efficiently done not by natural language communication, but by more
concise forms such as templates and menus. (Imagine doing routine editing by voice
control alone: “Now take the phrase ‘is required’ in the — let’s see: first, second, third,
fourth, fifth — fifth paragraph of the current screen, and move it to immediately
preceding the — let’s see: first, second, third, fourth — fourth period in the second
paragraph.”

Second, many systems will be written before these natural language systems
become available, if they ever do, and the complexity of use issue must be faced in
these.
30

Chapter 3 — How to Build a Zero-Search-Time Environment
Criticism 6: We can simply improve our present manuals, courses, and
customer support services. It is not necessary to devise an entire new method for
making software usable.

My reply is that this criticism is made without data as to the throughput
resulting from the present way of doing things, versus the Environments produced by
the method described below.

Furthermore — and here the burden of proof rests on me — I claim that the
method produces better software as a by-product, i.e., software which is cheaper and
easier to design, debug, and maintain.

Criticism 7: There is nothing new in the method being proposed.
My reply is that it is true that the idea of iterative design is certainly not new,

but it has yet to be tried in the way described, namely, by beginning with the desired
use structure for the software, and then iterating toward its implementation. No one
designs software that way now, though occasionally people talk about doing it in the
future.

A Method for Designing Zero-Search-Time Environments

I will present the method in its ideal form, in the firm belief that it is much
easier, in practice, to produce something that is a modification of something you
clearly understand, than it is to produce something that is a gluing together of pieces
you believe will add up to something you will understand. The method consists of
two major steps:

(1) Initialize the Environment.

(2) Use the Environment.

It's that simple, at least at the top level. Following are details on each step.

(1) Initialize the Environment

 There are three steps to initializing an Environment. Details on each step are
given immediately below.
31

Chapter 3 — How to Build a Zero-Search-Time Environment
(1.1) Establish the Class of Intended Users (CIU).

(1.2) Establish the Success Criteria.

(1.3) Establish the Primary (or “Top-Level”) Tasks.

(1.1) Establish the Class of Intended Users (CIU)

To establish the class of intended users (CIU) of the Environment, we define
the minimum knowledge (understanding of words, phrases, concepts) and the
minimum set of abilities which every intended user of the Environment will be
expected to have. All knowledge not assumed to be already possessed by a user must
be provided by the Environment. More precisely, this means that every word, phrase,
or concept which the user is not assumed to know:

• must be look-up-able directly (i.e., via an equivalent of the index function)
and indirectly (i.e., through any reasonable synonym which is itself look-up-able via
the equivalent of the index function);

• must be explained, directly or indirectly, in terms of words, phrases, and
concepts which the user is assumed to know. An Environment designer cannot shirk
this responsibility by arguments of the sort, “The user will be able to figure out...,”
“The user will be bright enough to understand that...,” without risking failure to meet
the look-up time criterion specified in “(1.2) Establish the Success Criteria.”

 Let us consider a few examples: Normally, you will assume that every user
will know how to use a standard computer keyboard. But can you assume that every
user knows what a function key is? If not, then you must explain how these keys
work. If the software system runs under a windows facility, can you assume that every
user is familiar with the use of that facility? If not, then you must explain common
words and phrases associated with the facility, e.g., double-click, drag, etc.

The smallest CIU is, of course, the programmers who wrote the software
system. Presumably, they know what every word and phrase concerning the use of the
system actually means. On the other hand, the company probably does not intend to
sell the system only to these programmers. The largest CIU, strictly speaking, is the
entire human race. For such a CIU, you could not even assume literacy, much less
32

Chapter 3 — How to Build a Zero-Search-Time Environment
literacy in a language understood by a significant number of software system
purchasers.

Thus, we have an informal rule: the larger the CIU, the larger the Environment
must be, due to the space required to explain unfamiliar words and phrases.

The CIU, along with the success criteria explained in the next section, enable
us to give a more precise meaning of the word clear, as in, “It will be clear to the
user...,”: clear in this context simply means enabling the user to accomplish the task in
question in accordance within the time defined by the criterion of success.

A word about hypertext is appropriate at this point: because the time to learn to
use the Environment is part of the measure of its efficiency, guiding rules for the user
must be as simple as possible. A short rule is, “Every word and phrase whose meaning
you can look up is underlined. Clicking such a word or phrase will cause a short
definition to be displayed.” Now the fact is that these underlinings may clutter the text.
So you have to make a choice: make the rule more complicated, e.g., “Only the first
occurrence of a given word or phrase in a section will be will be hypertext-linked,
unless the section is more than three paragraphs long, in which case ... ”. This now
introduces more complexity in the use of the Environment. Or else you can stick with
the simple rule and hope that these underlinings will become less and less annoying to
the frequent user.

Such issues are not trivial. If your rule governing the looking up of definitions
is so cumbersome that no one bothers to read it, a major convenience — and speed
enhancement — of your Environment will be lost.

(1.2) Establish the Success Criteria.

The mark of a science is the degree to which measurement of results — of
success — is possible. In the case of Environments, as stated at the start of this
chapter, the most important criterion of success is the speed at which any user in the
CIU can find out how to carry out a given task. However, experience suggests that not
every user will be able always to look up a procedure within the specified time limit.
(Some people take longer to do basic mechanical operations on some days.)
Therefore, Environment designers and the project manager need to come up with an
acceptable success rate, for example, 80%, so that the criterion for success will be that,
in 80% of user attempts, the user will be able to find the procedure for carrying out a
33

Chapter 3 — How to Build a Zero-Search-Time Environment
given task in less than 25 seconds after the first use of the machine. To measure the
actual success rate, users randomly selected from the class of intended users are asked
to perform randomly selected tasks, and their speed of success is measured.

This means no person-to-person communication of any kind unless such
communication is an explicit part of the Environment. Our aim is to capture all the
information which any member of the CIU needs to perform any task offered by the
Environment.

Of course, the performance of a given task may require several steps, each of
which in itself is implemented by a procedure. The 25-second figure applies to the
procedure for each step, not to all procedures together.

 At the start of the design process, therefore, the designers must establish what
they will consider the Minimum User Success Rate (MUSR) in order that the
Environment be considered guaranteeable, in other words, the minimum percentage of
attempts by users to find out how to perform a task that must lead to their finding the
information within the specified time period.

 This testing of the Environment on members of the CIU proceeds throughout
the evolution of the Environment and its contained system. (The early stages of this
evolution are often called the design stage.) The evolution occurs incrementally, i.e., it
is broken up into a sequence of segments each the length of, say, a few weeks, as
shown in the pseudoprogram under “(2) Use the Environment”, below. At the end of
each segment, that version of the Environment and its system become available for
user testing, while feedback from the use of the previous segment becomes the basis
for the next set of modifications.

 In the early stages of the evolution, of course, it will frequently be the case that
the system program to execute a given task does not yet exist. It is, however, essential
that the testing be conducted anyway, namely to ensure that users are able to know that
the task exists whenever they need to know it. (Test it before you build it!)

 Many Environments and systems evolve within a context in which the tasks to
be implemented already exist in cruder forms, i.e., they exist in other software
systems, or are done manually. Thus it is perfectly acceptable, and even encouraged,
for the Environment initially to implement tasks by such commands to the user as:
“Use system y,” “See John Doe.” This again reminds us that the fundamental reality is
tasks, not software.

(1.3) Decide on Primary (“Top-Level”) Tasks.
34

Chapter 3 — How to Build a Zero-Search-Time Environment
The system and the Environment are being designed to allow users to perform
certain tasks: to do text editing, to write and run programs in a certain language, to
store and retrieve data from a data base. These tasks we call primary tasks. In paper
Environments, the primary tasks are listed on the Start Page (see Appendix A); in on-
line Environments, the primary tasks are listed on the initial screen. For example, the
(top-level) primary tasks for a text editor would probably be:

 Create a new text.

 Edit an existing text.

 View existing texts.

 For an operating system, the (top-level) primary tasks would probably include:

Write a program (e.g., an application).

Run a program (e.g., an application).

Create or edit or print a text.

Communicate with other users.

 In addition to the primary tasks there will be metatasks which operate on, or
are concerned with, the system and the Environment themselves. We call these
secondary tasks. One secondary task which must be present in every
(sub)Environment is:

 Exit the present (sub)Environment (i.e., return to the previous
(sub)Environment).

Secondary tasks which must be present at least at the top-level Environment
would include:

 List vocabulary and abilities this Environment presumes on the part of the user
(i.e., display definition of CIU for the Environment).
35

Chapter 3 — How to Build a Zero-Search-Time Environment
Change or repair (debug) the system or the Environment.

 With the designers acting as the initial users of the system, the structuring by
use begins to develop, a la structured programming: each top-level task (primary or
secondary) is broken down into constituent second-level tasks, and each of these into
third-level tasks, etc., until, in each case, a level is reached at which the task can be
performed entirely by the system once the user has initiated it.

 For example, the second- or third-level primary tasks available under “Edit an
existing text” in a word-processing system might include the following. Curly
brackets mean that any one of the enclosed items can be chosen:

{Find, delete, insert, move, copy, display} {character, word, string, line,
paragraph}

Print {character, word, string, line, paragraph(s), file(s)}

Format {character, word, string, paragraph, line(s), file} as follows...

Observe that the question of how the choice is made, as well as the question of

how the character, word, string, etc. is to be indicated, are subordinate questions. The
important thing is that the What (the task) always precedes the How.

 As the evolution of the system and Environment proceeds, the designers
continually observe, for possible later implementation:

(1) what they (and other) users find themselves wanting to do in the
Environment;

 (2) when they find themselves wanting to do it, i.e., in what
(sub)Environments.

(2) Use the Environment

Using the Environment consists of a sequence of iterations of steps which are
described in the following pseudo-program. A process like this is called iterative
design, as contrasted with the more traditional linear design process (sometimes called
36

Chapter 3 — How to Build a Zero-Search-Time Environment
a waterfall process), which consists of a succession of stages, e.g., Initial Design,
Design Review, Breadboarding (i.e., creation of first prototype), Breadboard Review,
Coding, Documentation, Testing, Product Release.

 while product is viable do
begin current iteration
Incorporate changes from last iteration.

Break down next task(s) into subtasks which implement it.
 (The presentation of the subtasks is an extremely important
part of the Environment concept, and is further described
below under “The Presentation of Subtasks.”)
(At some point, these subtasks are performed by computer
programs. The use structure at that point is described below
under “Universal Flowchart for Tasks Performed by Soft-
ware.”)

Do user test(s).
(Product designers, programmers, technical writers can and
should act as users, as long as they don't assume skills and
vocabulary not possessed by everyone in the CIU.
Every Environment can always be tested down to the level
of each task statement. The question is, Can the user get to
the right place in the Environment within the minimum
established time?)

 end current iteration

After product release, of course, there will probably be little or no further
breaking down into tasks, all activity consisting of incorporating feedback from the
previous iteration.

Let me remove any doubts, or perhaps I should say wishful thinking, on the
part of Environment designers and technical writers working on Environments: “Use
the Environment” means that you, too, must use the Environment! You must learn
enough of the subject matter to put yourself in the CIU, and then you must attempt to
solve typical problems using the Environment. How important is this? The
FrameMaker documentation is a good example. I don’t know much about
FrameMaker, despite months of using and attempting to use it, but one thing I do know
37

Chapter 3 — How to Build a Zero-Search-Time Environment
is that the documentation, including Help, was not developed by people who had to
use it in order to get their work done. No one in that position could possibly have
wanted to write, much less would have written, documentation which requires as
much searching and reading and figuring out and and phone calling and learning as the
FrameMaker documentation does.

A few words on iterative design before we proceed: In computer science, this
concept goes back to at least the early seventies, where it was used in the Artificial
Intelligence/LISP programming culture. (“Build the first one to throw away.”) It is
often mentioned in discussions of the design of new software products, almost like an
incantation to assure the product’s success. Technical writers, who are much more
prone to believe that to recognize, much less utter, a popular technical term is
somehow to understand it and to have applied it, usually dismiss the idea because they
vaguely remember having heard of it somewhere. But in many years in the computer
field, working at several different companies, I have seen iterative design put into
actual practice only once. The idea of creating successive versions of the product that
can be used, and are used from day one — certainly from month one — much less the
discipline of actually doing so, is still thoroughly radical. Programmers still want to
finish the product and then use it. They cannot understand how one can separate use
from functionality.

However, signs of change are in the air. Designers of GUIs (Graphical User
Interfaces — programs which use a windows format to communicate with the user)
are now beginning to follow a design philosophy called Structured Rapid Prototyping
(or Iterative Protyping), which is essentially iterative design, and which came about
because new software tools make it possible to build and modify GUIs much more
rapidly than one can write the plans for building and modifying them! The technical
writing community has still not caught on to the enormous advantages that such an
approach affords, and that the approach can be applied to on-line documentation as
well: you still hear writers (and managers) complain that they can’t really start writing
until the product is finished, or very nearly finished, or at least until what they have to
write about has stopped changing. But this is nonsense, as I hope you will understand
by the time you finish this book. Documentation can and should be started on the first
day of product development, and the top levels of the documentation can and should
be viewed and used from the first week or two, and it doesn’t matter how often the
documentation changes during the course of development. Changes are easy to make,
just as they are easy to make in the new GUI environments. That is one of the main
advantages of rigorous top-down task-oriented Environment design. Documentation
should always track GUI development — the two should be present, side by side, on
the same screen, from the start. Instead of writers spending months planning and
38

Chapter 3 — How to Build a Zero-Search-Time Environment
discussing “what the user will want” (the vast majority of writers haven’t a clue about
what the user will want because they have never been daily, long-term users of the
systems they write about) — instead of writers wasting all this valuable company time,
they should get the top levels of the Environment on the screen and start modifying it
based on their own and others’ use, and, of course, based on additional information as
it becomes available from the product designers.

The Presentation of Subtasks

A sub-Environment is a set of subtasks implementing a given task, and the
essential requirement of every sub-Environment is that it give the user a rigorous
presentation of the subtasks that implement that task. By a rigorous presentation I
mean that the list:

• makes clear to the user all and only the subtasks that can be performed to
implement the given task;

• makes clear the sequence in which the subtasks must be performed in all
cases where sequence is important, and makes clear when sequence is not important;

• makes clear where the sub-sub-Environment can be found which implements
each subtask.

• makes clear how to return to the next subtask (if any) in the previous sub-
Environment (the super-Environment) and to the initial Environment (i.e., the Start
Page or Start Menu). (The returning to the next subtask in the super-Environment is
analogous to the behavior of a program upon completing a “call” to a procedure or
subroutine. In on-line documentation systems, there should be a button which is
always present that performs this return function.)

This rigorous adaptation of the procedure-call protocol of programs is one of
the most important features of an efficient Environment. However, it often arouses an
objection among beginning Environment designers, namely, that users “will get lost”
in the hierarchy — they will no longer remember what task they are carrying out, and
where the current sub-tasks are in the task tree relative to the others.

My replies to this objection are: (1) I know of no reports from long-term users
of such rigorous task structures that corroborate this opinion; (2) it is possible to
provide various kinds of orienting sub-titles in each set of subtasks; (see below under
39

Chapter 3 — How to Build a Zero-Search-Time Environment
“Alphabetical Titles = Numerical Titles!”) (3) the window or screen in which the
software is used provides a visual context; (4) we seldom if ever know at what task
level we are in when we use computer systems: we just “remember the steps”, or
follow the instructions in a manual.

Examples of sub-Environments are given in the appendices.
Let us consider the sequencing of steps in a procedure. There are some

subtasks that need to be done in sequence, and some that don’t, and it is absolutely
irresponsible for an Environment designer not to make the difference clear. Of course,
in most cases there will be more than one sequence of steps that could perform a task;
you are merely recommending the best one that you, and previous user experience, has
dictated. (And you need to state that explicitly whenever appropriate.)

I sometimes get the impression that nowadays technical writers, with the new
tool of task-orientation in their possession, feel it is somehow indecent to impose an
order on steps. They seem to think that the only kind of acceptable subtitle is one
whose first word ends in ing, e.g., “Inputting Data,” “Setting the Initial Parameters,”
“Testing for Successful Access,” etc. But at the very least, there is a sequence in the
way the product is used, namely, install the product if necessary, then turn it on, then
use it (here there may be a great deal of freedom in the order in which tasks are done,
as will be clear from considering a desktop publishing system, since you can edit an
existing document, create a new document, print an existing document, in any order
you wish).

Sometimes it is legitimate to put a sequence of steps in a paragraph, e.g., when
the sequence is short, say, less than four steps or so, and when the steps themselves are
short, e.g., the clicking of buttons in dialogue boxes. But even here, always put the
task first, then the procedure. Say, “To do x, do the following...” not “Clicking the x
button, then the y button, will result in...” unless you are warning the user of what not
to do. In these cases of short sequences of short steps, it is legitimate to omit numbers.

But otherwise, let me repeat: you should number steps when, and only when,
sequence is important. When sequence is not important, use bullets or other symbols
that do not imply sequence. In the Environments I build, I use language such as the
following whenever a step involves choices: “Do one or more of the following, in any
order you wish, as often as you wish. When you are done, go to step ...”

It is perfectly legitimate, by the way, for a step to say, in effect, “Read the
following sections... and then use your best judgement as to how to produce the
following result...” [or “...a result having the following properties...”]

Finally, in order to stay within our maximum look-up time limit, we must make
it clear where the user can find how to do any subtask he doesn’t know how to do. In
paper Environments, this is done by a statement such as “See ‘data base, inputting data
40

Chapter 3 — How to Build a Zero-Search-Time Environment
to a’”. In on-line Environments this is done by an explicit menu choice or by a
hypertext link.

There is one more very important issue concerning tasks which we need to
confront, and this we do in the next section.

Tasks and “Things”

As a result of the growing trend toward task-oriented manuals, technical
writers nowadays often give a brief summary of the tasks to be described in a chapter,
along with page references. This is a step in the right direction. Unfortunately, these
writers still have one foot in their literary heritage, and believe that the brief summary
is, in effect, simply a kind of table of contents, with titles and sub-titles written as
tasks, setting forth what will be covered in the chapter. In other words, it’s still the old
“Read it, learn it, use it.” In the worst cases, these writers have learned nothing more
than the trick of converting old-style table-of-contents headings — “Installation,”
“Input,” “Output” — to the new gerund style — “Installing the System,” “Inputting
Data,” “Outputting Results” — flattering themselves that somehow this constitutes an
advance in their craft. Against naivete of that magnitude even the gods strive in vain.

But the chapter concept itself is obsolete, as I assume the astute reader has
already realized. It is surprising that this table-of-contents type of listing continues
among people who themselves must often have been frustrated in rapidly finding the
instructions that they were looking for, because, as often as not, the referenced pages
do not contain all and only the steps needed to accomplish what they want to
accomplish.

This is why the maximum time constraint on finding procedures for carrying
out tasks is so important. Among other things, it forces writers to reduce to a
minimum — to zero! — the amount of reading and searching that the user needs to do.

Let us think as clearly as we can about this question of tasks. First we realize
that tasks normally involve things: we perform tasks on things: we modify (a task) the
format of a paragraph (a thing); we change (task) a tab setting (thing); we print (task) a
file or document (things); we input (task) data (thing) to a data base (second thing); we
modify (task) the format of data (thing) in the data base (second thing); we run (task) a
program (thing).

Of course, the chapter in a traditional manual is usually about one or more
things: in a desktop publishing system, a chapter may be about creating and modifying
illustrations, or rather, about the drawing and illustrating module of the system; in a
41

Chapter 3 — How to Build a Zero-Search-Time Environment
data base management system, a chapter may be about schemas or queries or security;
in an operating system, a chapter may be about utilities, scripts, command interpreters.

Next we realize that, in the course of using existing software, i.e., software for
which a zero-search-time Environment does not exist, we often don’t know under
which heading to look up a given task. If we want to find out the names and locations
of printers to which we have access from our workstation, which manual’s index
should we turn to, and once in that index, what heading should we look under?
“Printers”? If we don’t find it there should we then try “devices, output”? If we don’t
find it there, should we then look under “output devices”? Or, in Unix, should we then
look under “environment variables” (or “variables, environment”) because we vaguely
remember that some of these are concerned with printers? Or should we look under
“spool” because the spooling utility may have associated with it a list of all accessible
printers?

So it seems clear that if we are to achieve our goal of 25-second maximum
look-up time, we will, once and for all, have to come to terms with the relationship
between tasks and Things. (From here on, I will write the word with an initial capital
to distinguish this particular type of thing. I realize the word is not a good one, but two
of the alternatives seem to me to be worse: “object” has several other specific
meanings in computer science; “entity” seems too general.)

Fortunately, computer science has already provided a way to deal with this
relationship, namely, in the concept of abstract data structures. Here is the
background.

A data structure, as its name implies, is a way of organizing data. For example,
a list, (a, b, c, d, ..., z), is a data structure, the items of data being represented by a, b, c,
etc., and the address of any item of data being specified by a number, k, representing
how far down the list, from left to right, you need to count in order to reach that item.
A table is a data structure, with each item of data having a row and column address.

Such structures are indispensable to programmers, but, as programmers
gradually found out, there were many ways to implement each data structure,
depending, for example, on the programming language they were using, and the
constraints of program operating speed they were faced with. It began to dawn on
programmers that it didn’t really matter how the data was stored in the computer; what
differentiated one data type from another was the kind of operation you had to perform
to access the data in the structure. Thus, you have a list data structure when you can
access any piece of data in it by a command (operation) which in effect says, “Get me
the k’th item in the structure.” You have an array data structure or table when you can
access any piece of data in it by an operation which says, in effect, “Get me the data in
the i’th row and the j’th column of the structure.”
42

Chapter 3 — How to Build a Zero-Search-Time Environment
So the key idea here is that a Thing is defined by the operations that can be
performed on it. Period.

We adapt this idea to Environment design by the requirement that every type of
Thing, e.g., drawing, paragraph, document, schema, query, program, command
interpreter, etc., have associated with it, in the Environment, all and only the tasks
(operations) that can be performed on the Thing, with an explicit reference to the
location in the Environment where the procedure for performing the task can be found.
Thus, in the case of tabs in a desktop publishing system, these operations include:

look up the definition of the word tab.

define (set) a tab.

delete a tab.

indent a line of text to a pre-defined tab.

move an existing tab.

view all currently defined tabs.

If this were, in fact, the complete list of operations on tabs, then the user would
know immediately that any other operation he or she wanted to perform on tabs, was
not possible.

In an operating system like Unix, of course, the list of Things is large, and
includes directories, files, permissions on directories and files, processes, jobs,
environment variables, users, shells, and much more.

In the case of complex Things, e.g., data models, schemas, data bases, it is a
good rule to make the first task in the list, “Get definition and background on” with
a reference to the appropriate prose. This prose, of course, can be in traditional book
format. It certainly does not in itself need to be task-oriented. Making it available at
the head of the task list is an example of what has been called just-in-time learning: the
user does not have to read the material until (s)he is ready to use it.

In every Environment, each Thing must have a page or screen that lists all and
only the operations that can be performed on the Thing. Some examples are given in
the appendices.
43

Chapter 3 — How to Build a Zero-Search-Time Environment
Basic Tasks versus Complex Tasks

The astute (i.e. skeptical) reader may well raise an objection at this point,
namely, that it is in fact impossible to list all the tasks associated with any given Thing,
because the list is infinite! Consider the computer keyboard as an example of a Thing.
It is true that the tasks I can perform on a keyboard include typing each letter and
number marked on the keys (a finite number of tasks), but I can also type any arbitrary
finite sequence of letters and numbers, and the list of all such sequences is infinite
(countably infinite as mathematicians say, meaning that the items in the list can be
matched, one for one, with the positive integers). The same is true for the tasks
associated with any other Thing. So how can I require a list of all and only the tasks
that can be performed on each Thing? The answer is that this list, as in the case of the
list of keys on a keyboard, must consist of all and only the Basic Tasks that can be
performed on the Thing. In principle, any task that can be performed on the Thing, no
matter how complex, must be able to be performed by a finite sequence of these Basic
Tasks. (A simple example of a set of these Basic Tasks is given under “index” in the
partial FrameMaker Environment in Appendix A.) Of course, it is perfectly legitimate
— and highly desirable — to include other tasks in the list, specifically tasks that are
performed frequently. The Basic Tasks are simply the minimum acceptable set.

In chapter 5, I make the outrageous suggestion that Environment designers
should have a background in at least some of the more important subjects in
undergraduate mathematics and computer science. The reason I give is that these
subjects supply important templates for thinking about problems that arise in the
development of Environments. The problem of basic versus complex tasks is an
example. It is a problem which was first confronted by the ancient Greeks as a result
of their attempts to develop a minimum set of axioms for geometry — a set from
which all the truths of geometry could be derived. The problem received expanded
attention toward the end of the nineteenth century as a result of researches into the
foundation of mathematics. It became a central issue in computer science in the 1950s
and 1960s as computer scientists began to confront the problem of compiler design, a
problem which involves the study of formal grammars. (A formal grammar is a
generalization of the notion of a minimum set of rules that yield an infinite set of
strings of symbols.)

An Environment designer who knows something of these subjects has tools to
deal with, to think about the question of listing the tasks associated with a given Thing.
Others, I can only suppose, will attempt to deal with the problem in the usual ways: by
attempting to write still better explanations (“clearer prose”), or another manual, or
44

Chapter 3 — How to Build a Zero-Search-Time Environment
perhaps by using hypertext and a GUI and multimedia. (I hope there is no doubt in the
reader’s mind as to what I am criticising here: it is not these various means in
themselves, but rather the use of them inappropriately.)

Properties of Things

So far, we have discussed Things and tasks on Things. To complete the
picture, although we will not exploit it in this book, we must understand that Things —
directories, files, documents, paragraphs, drawings, disks, applications, data bases,
schemas, users — have properties. Normally, tasks operate on these properties. For
example, the properties of users include the user name (or names), the user’s present
role or set of permissions, the user’s home terminal or workstation, his or her home
directory, etc. Putting it as simply as possible: each Thing has properties and among
these properties are the basic operations that can be performed on the Thing.

The Universal Flow Chart for Tasks Performed by Software

The Universal Flowchart for Tasks Performed by Software, shown in Fig. 3-1,
describes the use of the Environment at the level where a task is entirely performed by
the computer software. Such a task is called an atomic task; an example is clicking the
Print button after you have entered all the required information in a Print... dialogue
box; or clicking the Compile button in a programming Environment; or typing a
command in Unix. An atomic task causes something to happen as opposed to merely
bringing up more choices. The flowchart is mostly self-explanatory. The “you” in the
figure is, of course, the user, not the machine. The following are a few comments on
the nodes in the flow-chart.

Decide what task to do next. The assumption here is that the user is confronted
by more than one task, each of which is entirely implemented by software.

Feedback indicate everything is OK? Nowadays, many software systems
employ various visual devices to indicate that processing is proceeding in what the
45

Chapter 3 — How to Build a Zero-Search-Time Environment
program(s) believes is the normal way. The Apple Macintosh, for example, displays a
little wristwatch, or a parallel-moving bar, to indicate this. PCs display an hourglass.

Initiate appropriate software operation. This is normally done by clicking, or
double-clicking, a mouse key, or by typing a command.
46

Chapter 3 — How to Build a Zero-Search-Time Environment

 Figure 3-1 The Universal Flowchart for Tasks Performed by Software

 going OK? No instructed by

 Yes

 Feedback from machine indicate operation
 is done?

 Yes

 Look at results.

No
 Are you done with the task?

 Yes

No
 Are you done with all tasks you want to do?

 Decide what task to do next.

 Do you know how to do task? No Look up in Environment.

 Yes

 Initiate appropriate software operation.

 Do you want to abort machine operation?—Yes Abort as instructed

 Feedback indicate everything is Fix problem as

 Environment.

No

 No .
 in Environment.

Yes
Exit
47

Chapter 3 — How to Build a Zero-Search-Time Environment
The Index: Most Important Part of Any Documentation System

“All I want from a manual is a good index, so I can look up what I need to and
get out of there. Unfortunately, the only purpose most indexes serve is to allow the
company whose manual it is to say, ‘Look! Look! An index!’ And it's true — they do
look like indexes. Why should I spoil the illusion by pointing out that you can never
find anything in them?

“As far as I'm concerned, if the index is worthless, so is the manual. And if the
manual is useless, so — usually — is the program (the exception being those programs
that are so intuitive, so easy to use, that you don't need the manual at all). — Naiman,
Arthur, et al. The Macintosh Bible, 4th ed., Berkeley, Calif: Peachpit Press, 1992, pp
45-46.

Such programs you now know are simply programs with efficient on-line
Environments.

The Mac Bible authors are, again, right on the money, and in recent years I
have found a reliable criterion of the real intelligence, the sharpness, of any author —
regardless whether their subject is computers or mathematics or any science or any
humanities subject — to be their attitude toward indexes. If the author considers the
index as a last-minute nuisance, something added on to a book, I know that I'm dealing
with a person who doesn't think about what he or she is doing.

There is a systematic way to index any technical subject, and to check the
index of any technical document, and that is via the approach called abstract data-type
(adt) indexing. This is simply an index constructed in the way described above under
“Tasks and Things”. The rule for looking up something in an adt index is simple: (1)
Think of the Thing you want to perform a task on, e.g., if you wanted to copy a file
from Unix to a PC, you would look under “file”; if you wanted to establish a
connection to a server, you would look under “connection” or “server”; (2) Find the
task under that Thing and go to the referenced location in the document. Thus, for
example, under “file” the task might be listed as, “copy a, from Unix to PC”. Other
tasks listed under file would be “copy a, from PC to Unix”; “copy a, from Unix to
Unix”, etc. The concept of adt indexing not only provides a simple rule for creating
indexes, it also provides a simple means of checking the completeness — the
usefulness — of any given index. Unfortunately, it also reveals the wooliness of most
professional indexers’ approach to their work, an approach which is derived entirely
from the liberal arts, and hence is void of any comprehension of the real nature of
technical subjects.
48

Chapter 3 — How to Build a Zero-Search-Time Environment
Like most of the ideas in this book, the concept of adt indexing does not go
down easily with most technical writers. First of all, they wonder at the need for such
a single, uncompromising rule which clearly restricts their creativity (when they have
time to do indexes at all), and, second, which clearly requires more of their time than
normal (read: haphazard) indexing. The answer is that adt indexing is essential for
achieving 25-second look-up-ability, because it eliminates the need for the user to
search the index for the reference (s)he wants. (I am taking the liberty of not calling
the looking up of something alphabetically “searching.”)

 One question that has been asked about adt indexing is: why not index on
verbs instead of on Things? The answer here is, first, that verbs are not excluded from
adt indexing! Certainly the verb “abort” and its synonyms and near-synonyms, “shut
down,” “turn off,” “kill,” “terminate,” must be in any index to software
documentation, adt or not. But the reason why verbs should not be the central
indexing focus is that there are far more synonyms for even the most common verbs,
than there are for Things. There are not many synonyms for “file,” “server,” “data
base,” “paragraph,” “sentence,” “figure,” “table,” but there are many synonyms for
“delete” (e.g., “remove,” “erase”), for “create” (e.g., “make,” “write,” “produce,”
“construct”). The more synonyms, the more searching the user might have to do to
find the reference (s)he wants.

The Waste! The Waste!

Think of the thousands of users of any popular product: Windows,
FrameMaker, Unix,... Each day, some of these users need to perform tasks which they
don’t know how to perform — ordinary, perfectly reasonable tasks, such as those
listed in the previous section and elsewhere in this book. Somehow or other — by trial
and error, by searching through volumes of manuals, by using this or that on-line
search engine and wading through twenty or thirty hits, by bothering the person in the
next cubicle, or by some combination of these — somehow or other they find out how
to perform the task. Think of all the users repeating these same searches for
instructions on performing the same task, day after day, month after month, over the
life of the product! Surely it is a natural question to ask, Why not have one user go
through the effort once, record what (s)he finds, and then make that information easily
available to all other users? What could be a more natural question? That user is, of
course, the Environment designer (and the programmers that are his or her information
49

Chapter 3 — How to Build a Zero-Search-Time Environment
sources), and the way (s)he knows (s)he got all the “ordinary, perfectly reasonable
tasks” is described in the previous chapter, under “Tasks and Things.” The results of
these searches go in the adt index.

All of which can be summed up by a slogan which is not original with me, but
was created by the director and the marketing manager of a new product team: Put the
intelligence in the Environment! That is precisely it: we want to put as much of the
intelligence required to use the system, in the system itself — in the Environment —
and not require that each user supply it, in addition to the intelligence each user must
supply to use the system for his or her purposes. In other words, we want to provide
the user with pre-searched documentation, and that is what an adt index makes
possible.

The One-Two Punch: Task Orientation and Adt Indexing

Our goal is that, say, 80% of the time, users will be able to find out how to do
what they want to do in less than 25 seconds. We have now seen the two ways by
which that goal is achieved: (1) strict task orientation, so that, in principle, any user
can accomplish any task made possible with the Environment by moving down the
task tree, and (2) an adt index, so that any user can look up how to perform any task
made possible with the Environment simply by thinking of the Thing (or Things) (s)he
wants to peform the task on, then looking up that Thing in the index. That’s the
solution in a nutshell.

After-the-Fact Environments

Let me repeat: Environments can be created after the fact, i.e., after the
software has been completed and the product is on the market! The only disadvantage
is that if, in fact, the procedures for performing certain tasks are time-consuming and
tedious and clumsy, there will be little chance to change the software at this late stage.
The software will dictate the use instead of the use dictating the software, as it should.
Similar thinking has been applied in the software community regarding programs.
Here are two examples:
50

Chapter 3 — How to Build a Zero-Search-Time Environment
(1) If it is possible to write program-provers — i.e., programs which, given a
high-level specification of a program, and the program itself, will tell if the program is
correct — then why not write a program that will generate correct programs from
high-level specifications to begin with?

(2) If it is possible to write a Help system which understands natural language
inquiries about commands, then why not write a program that will execute those
commands directly from a natural language request?

And so you can see that it is perfectly natural to ask: If it is possible, with great
labor and time expenditure, to explain (some of) the use of a software system after the
software has been written, then why not explain it before the software is written —
meaning, why not describe the use structure before we write the software? That is the
goal, but we can still design efficient Environments in the years before this practice
becomes common.

Techniques for Developing Environments

The following are rules and guidelines that seem to me to be the most
important in carrying out the day-to-day work of designing and building
Environments. No doubt many readers are already using some of these. I don't claim
that each is the best of its kind, only that, at present, after many years in the business, it
is the best that I know of. The order of presentation is not significant.

Get the Environment to the Users (and Reviewers) as Soon as Possible

The essence of incremental design is that the Environment is always usable,
even though it may not be “complete”, relative to all the tasks it intends to describe.
From the first day — or, at least, the first month, say — the Environment should be in
place. If part or all of the Environment is on paper, then the clearly labeled binder
should be next to all workstations on which the software is being developed and/or
tested, with a pencil attached, and a sign encouraging all users to jot down on the
pages any complaints, thoughts they have, especially information they were unable to
find in the Environment. Smart project leaders will make the raises of programmers
51

Chapter 3 — How to Build a Zero-Search-Time Environment
and engineers subject to, among other things, their contribution to the development of
the Environment.

Proceed by the Rule of Maximum Disambiguation

The Rule of Maximum Disambiguation — or, more precisely, of Maximum
Rate of Disambiguation — says that, in general, you should work next on that part of
the Environment which, for a given amount of effort, will reduce user uncertainty the
most. Thus, if nothing at all exists in a sub-Environment about a certain task, then
your first question should be, given the class of users, what are they most likely to be
unsure about? How much could you expect them to figure out for themselves, if you
and all engineers and programmers dropped dead tomorrow? This last question is not
a contradiction to our goal of creating an efficient Environment, namely, an
Environment in which users never have to figure out where procedures for carrying
out tasks, are located. This question is merely a guide toward achieving that goal — a
way of establishing priorities of things to be done.

Another way of implementing the Rule is by asking yourself: Suppose I only
had one more day to work on the Environment: what would I put in it, what do I have
reasonable grounds for believing the users could figure out for themselves? Which
demonstrates again the importance of knowing the skills and knowledge of your class
of users.

Still another way of implementing the Rule is by imagining that you are
participating in a contest in which $1 million will be awarded to the Environment
designer who enables a set of users to accomplish the most tasks with the fewest errors
in the shortest time after the start of the Environment design. The users, whose skills
and knowledge are known to the designer, receive no information about the product
except what is in the Environment.

Virtually any representation of task information will reduce ambiguation: to go
to extremes: hand-written text, hand-drawn figures would serve the purpose initially,
since they give the user more information than he or she had previously. Some later
pass at disambiguation might then be converting this hand-written, hand-drawn
information into a typeface. Some much later pass might involve insertion of italics,
boldface, or fancier typefonts.

 More time is wasted on fussing over typefaces and formats than anything else
in the development of documentation. (Typefaces and formats certainly wouldn’t be
52

Chapter 3 — How to Build a Zero-Search-Time Environment
your main concern if you were out to win the $1 million!) Technology is seductive!
It invites us to waste time on premature refinements: after computer typefaces became
available on desk-top systems, middle managers earning upwards of $75,000 a year
(that’s more than $35 an hour) were spending hours in preparing memos and reports
which would have been perfectly legible if written in a single typeface — even, in
most cases, if written in the author's handwriting!

Similar arguments apply to the use of spelling and grammar checkers, and to
page layout refinements in column widths and margins. The types of spelling and
grammatic error that you make are rarely so bad that you would literally be unable to
figure out what you meant when you make the next pass through the document. Use
spelling and grammar checkers just before you are ready to print a copy to submit to
others.

Alphabetical Titles = Numerical Titles!

Most writers don’t realize that a common form of index entry can be used as a
form of title which serves exactly the same purpose as the traditional numerical form
does. Here are two examples:

File, ASCII, creating a
.
.
.
File, binary, creating a

which would correspond to the traditional

5.3.1 Creating an ASCII File
.
.
.
5.3.2 Creating a Binary File

There is no reason why we shouldn’t take advantage of this highly useful
characteristic of alphabetical ordering! It parallels the form of entries in an adt index,
53

Chapter 3 — How to Build a Zero-Search-Time Environment
it makes instantaneously clear to the user where (s)he is in the documentation
structure, and, as shown in appendices A and B, it makes possible the unifying of
index and text, at least in paper implementations of Environments. Getting used to the
new format is a small price to pay for the enormous increase in speed of access which
the format makes possible.

The Proper Place of Editing

The old ways die hard. Sometimes, even at this late date, you will run across a
manager who believes that before documentation is released, it must be “edited.” This
view is, of course, a relic of the book era, when books (e.g., manuals) went through a
series of discrete stages prior to publication: first they were written, then, if the author
was lucky, they were edited, then typeset, then proofread, then printed, then
distributed. In modern documentation, including Environment design and
development, editing is an ongoing process: it is part of normal quality assurance.
Furthermore, it is far less important than it is in the case of old-fashioned, pre-
Environment documentation, because much of what used to be handled by prose is
now handled by form, e.g., the form of recursively structured tasks. Ultimately, when
Environments have advanced to their inevitable final form, namely data bases (see
next chapter under “Environments are Data Bases Whose Content is the Use of
Software Systems”), the need for editing will be all but eliminated.

One and Only One Name for Each Thing!

Settle on one and only one name, or term, you will use for each task and Thing
throughout the Environment. Obviously you should try for the term that will be
recognized by most of the potential users. Then, of course, you must include all
reasonable synonyms, and refer each to the term you have chosen. This is also more
efficient, since it saves you duplicating information under several different terms.
This practice should apply to commonly occurring phrases too.
54

Chapter 3 — How to Build a Zero-Search-Time Environment
Include Definitions of Terms Already in User’s Minimum Vocabulary

Strictly speaking, you never explain anything in an Environment that is already
in the minimum vocabulary of your intended users. But good design practice always
includes a safety factor, a degree of redundancy or overlap, which, in this case, means
that you do include definitions of those terms and phrases which are in the user’s
minimum vocabulary but which you suspect, or know from usability testing, have
more than one meaning.

Handle Error Messages the Right Way

Users probably waste more time in trying to figure out error messages than in
any other information searching activity. With our task-oriented, zero-search-time
orientation, however, the solution is simple. Ask, first, what task is associated with an
error message? (In Figure 3-1, the occurence of an error message is indicated by a
“No” reply to the question, “Feedback from machine indicate everything is going
OK?”) The associated task is that of fixing the error so that the original task can
proceed (“Fix problem using Environment”). Therefore, each error message must
have associated with it a reference (typically a number) to a location in the
Environment where information on corrective tasks will be found. But the user should
not have to figure out that location (or else we won’t be able to deliver on our 25-
second maxmum look-up time). Therefore, in the index there need to be entries such
as, “errors,” “error messages,” “problems,” “problem-solving,” “trouble,” “trouble-
shooting,” “warnings,” “warning messages,” and anything else that user experience
plus your own intuition tell you might be a heading under which users will look for
explanations of error messages. Each entry should refer to the one section (or two, if
you treat warnings separately) where the explanations and corrective tasks are given.
If messages and/or warnings begin with numbers alone, then there must also be a
reference to the explanatory section in the section of the index where strings beginning
with numbers are listed.

In the explanation section(s), messages should be listed alphabetically or by
number, with possible causes, and possible remedies, and at least a statement at the
start about calling Customer Support (phone numbers and hours). Nothing less will
do.
55

Chapter 3 — How to Build a Zero-Search-Time Environment
Finally, even though error messages are almost invariably written by engineers
and programmers, for whom English is an annoyance that gets in the way of the
important things in the world, namely, machines and programs, do whatever you can
to make error messages clear and grammatically correct. Statements still begin with
capital letters, and end in periods or exclamation points. The terms in error messages
are not exempt from the rule given above under “(1.1) Establish the Class of Intended
Users,” namely, that every term in the Environment must be either in the user’s
minimum vocabulary, or explained somewhere in the Environment in terms of that
vocabulary.

Maintain Consistent Meaning of “I” and “You” in All Documentation and
Messages

I suppose this must come under the heading of a minor point, but since our goal
should be to create superb Environments, in which details have been attended to, and
not merely to create acceptable Environments, it needs to be mentioned. If the
software (i.e., the computer) speaks to the user as “I” in one message, then it must
speak to the user that way in all messages. If “you” means the user in one message,
then “you” must mean the user in all messages. On the other hand, if it is deemed
more desirable to couch messages in objective language — “No such file in current
directory” — then that language must be maintained in all messages.

Embed Questions and Notes to Yourself in the Text

During the course of creating an Environment, numerous questions will occur
to you. Some will have to be answered by the engineers or programmers who are
creating the software, others you will answer yourself. You will also want to remind
yourself of things to be done. Since it is very easy to forget these, and since it is a
nuisance to write them down on paper, the easiest, and most efficient, solution is
simply to embed them into the text as you go. Nowadays the more advanced desk-top
publishing systems make it possible, through hidden text and conditional text
mechanisms, not only to hide these questions and notes whenever you want in order to
56

Chapter 3 — How to Build a Zero-Search-Time Environment
produce a clean, current version of the text, but also to make them appear obnoxious
and ugly, through proper selection of typeface, and hence demanding attention! In
more primitive systems, you can simply identify each question and note by an
annoying symbol such as ***.

Warning! Be absolutely certain that the reviewers of your text understand that
the questions and notes are not a permanent part of the text! I know of a man who was
fired from a job because his manager — who had never supervised a technical writer
or any other kind of Environment designer — thought that (a) if the writer had not
been able to answer all questions by himself by the time he gave the document out for
review, that could only indicate that the writer was incompetent, and (b) that users
would be put off by a document that was full of questions and notes! (The manager
did not understand that the notes and questions could be removed at the click of a
mouse button by setting their display property to “hide” or the equivalent.)

Don’t Waste Time Fussing With Style Guides

The Rule of Maximum Disambiguation says, among other things: Don’t waste
time fussing with style guides! If one exists, use it, modifying it only when potential
confusion of the reader is at stake or when company dictates demand it. If none exists,
use an existing one for the industry you are working in, or one published by a
professional association for the industry.

Arrange Information “For the Eye”

Write for the eye. Write so that the user can understand what to do as quickly
as possible!

 Prose is good for one or two readings, bad thereafter. Typically, we remember
the gist of a prose instruction, but forget the hard information therein, e.g., the values
of command parameters. Set commands apart by placing them on separate lines.

Lists are much easier to read in vertical, stacked form than when strung out
end-to-end in prose
57

Chapter 3 — How to Build a Zero-Search-Time Environment
Encode Syntax Rules

Sooner or later you will have to deal with syntax issues which occur again and
again throughout the Environment. Specifically, you will have to decide what indents,
typefaces, and language you will use to express:

•Commands, menu- and window-selections made by the user, including
variables

•On-screen responses made by the software
•Hypertext words and phrases
•Names, e.g., file and directory (folder) names
Nowadays, word-processors and desk-top publishing systems have ample

facilities for encoding these rules, so that you can easily change them as desired during
the course of Environment development and have the changes immediately take effect
in all locations where the rules have been applied.

Use the Active Voice, Personify Programs, Refer to User as “You”

The old rule still holds: in general, prefer the active voice. Don’t hesitate to
personify programs, e.g., “The search program then tries to find a match for ...,” “The
output program doesn’t care if the string represents a file name or a number.”

Use “you”, not “the user”, e.g., “If you want the data printed in column format,
then...”
58

Chapter 3 — How to Build a Zero-Search-Time Environment
59

	CHAPTER 3
	HOW TO BUILD A ZERO-SEARCH-TIME ENVIRONMENT
	Definition of Environment
	Definition of Zero-Search-Time Environment
	The Real Contribution of Windowing Systems
	Effect of Look-Up Speed on Environment Design
	Replies to Criticisms of the Idea of Developing a Method for Environment Design
	A Method for Designing Zero-Search-Time Environments
	(1) Initialize the Environment
	(2) Use the Environment

	The Index: Most Important Part of Any Documentation System
	The Waste! The Waste!
	The One-Two Punch: Task Orientation and Adt Indexing
	After-the-Fact Environments

	Techniques for Developing Environments
	Get the Environment to the Users (and Reviewers) as Soon as Possible
	Proceed by the Rule of Maximum Disambiguation
	Alphabetical Titles = Numerical Titles!
	The Proper Place of Editing
	One and Only One Name for Each Thing!
	Include Definitions of Terms Already in User’s Minimum Vocabulary
	Handle Error Messages the Right Way
	Maintain Consistent Meaning of “I” and “You” in All Documentation and Messages
	Embed Questions and Notes to Yourself in the Text
	Don’t Waste Time Fussing With Style Guides
	Arrange Information “For the Eye”
	Encode Syntax Rules
	Use the Active Voice, Personify Programs, Refer to User as “You”

